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ABSTRACT

We extend the study of learning and generalization in feedforward Boolean net-

works [70, 93] to random Boolean networks (RBNs). We explore the relationship

between the learning capability and the network topology, the system size, the

training sample size, and the complexity of the computational tasks. We show

experimentally that there exists a critical connectivity Kc that improves the gen-

eralization and adaptation in networks. In addition, we show that in finite size

networks, the critical K is a power-law function of the system size N and the

fraction of inputs used during the training. We explain why adaptation improves

at this critical connectivity by showing that the network ensemble manifests maxi-

mal topological diversity near Kc. Our work is partly motivated by self-assembled

molecular and nanoscale electronics. Our findings allow to determine an automata

network topology class for efficient and robust information processing.
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1

INTRODUCTION

The goal of this thesis is to study find optimal topologies for unstructured networks

of random automata performing robust information processing in noisy environ-

ment. We extend our understanding of the task solving in feedforward random

networks of 2-input Boolean gates to random networks of Boolean gates with var-

ious number inputs. We study the learning capability of these systems in a noise

free environment and calculate their intrinsic functional capacity. We then study

the behavior of these random networks in noisy environment and explain the evolu-

tion of their connectivity and other topological properties. Our result is applicable

in application-specific hardware systems and future self-assembled nanoelectronics.

1.1 GOAL AND MOTIVATION

We introduce a general purpose network information processing system based on

Random Boolean Networks (RBN) [40]. Our long term aim is to gather viable

heuristics that we can use to develop a self-organizing algorithm to configure this

network for a specific computational task. This algorithm should be robust both

during the assembly process and during the operation of the network. Teuscher et

al. [86–88] introduced RBNs as a candidate solution to build the future nanoelec-

tronic architectures.

For practical purposes, our conceptual model of computing today is based on
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the von Neumann architecture in which data and instructions are stored in mem-

ory and processed by a processing unit. The explicit sequential nature of the

processing is a major drawback in speed of computation. The traditional way

of building processors employs integrating well-designed transistor-based circuits

that are built using semiconductor technology. To improve the performance of

this type of processor, we have to build circuits with higher integration, i.e., pack

more transistors in less space. For many years this has been the standard way for

the microprocessor industry to build faster processors. In the past decade, as the

level of integration has dropped deep into the nanometer scale, the fabrication of

processors has faced new challenges.

The nanoscale fabrication of microprocessors introduced higher energy con-

sumption, risk of failure because of high operational temperature, and low yield

[34]. A common solution around the performance limitation of a single processor

is concurrency. We can distribute the computational load of a program between

many processors to achieve a speed-up. But this solution brings many challenges

along with it. Asanovic et al. [9] gives an overview of different techniques that are

proposed for distributed concurrent programming and the drawbacks that each

technique faces. However, in the perspective of the author, the major limita-

tion of all parallel programming techniques today is scalability. Except for a few

“embarrassingly parallel” computations — such as matrix multiplication — we

do not have a general way of achieving speed-up for a system with more than

eight processors; the cost of inter-processor communication to guarantee memory

consistency is higher than we can afford. However, biological organisms appear

to have evolved to solve the distributed parallel processing problem effectively.

We seem to be immersed in concurrent operations all around us. From the laws

of physics that govern the interactions between the objects of various scales in

our universe to the biology of living organisms, we have observed, studied and

modeled these systems for centuries. Yet we are unable to harness the power of
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concurrency in the architectures we so carefully design and build specifically to

achieve it. Both the founder of theoretical computer science, Turing, and the

creator of the stored program architecture, von Neumann, had envisioned the lim-

itations that the sequential nature of their designs entailed. Their fascination with

the way biological organisms and our brain work eventually led to the creation

of Turing’s “unorganized machine” [85, 90] and von Neumann’s “self-reproducing

automata” [97]. Unfortunately both of these ideas remained mainly in the world of

academia. However, challenges we face in the world of computer architecture and

advances in nanotechnology has produced a new wave of research in the theory and

the application of simple automata networks, an underpinning element of both the

unorganized machine and the cellular automata.

1.2 CHALLENGES

Experimental physicists and material scientists have devised practical ways to self-

assemble nanoscale wires and switches very cheaply in comparison to conventional

electronics fabrication [34]. However, one issue with using these self-assembled

circuits is the lack of knowledge about their final structure. All the methods

of programming a general purpose computer today rely on the knowledge of the

underlying system architecture, i.e., the memory structure, the input-output ports,

etc. The high level questions we attempt to study in this thesis are:

1. How would we create a general purpose programming system to configure

computers with a random or unstructured architecture?

2. What is the optimal structure of a reprogrammable computer based on un-

structured devices?

This study aims to create a foundation for creating self-organization algorithms

for a random network of random automata. Despite the similarities between our
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proposed model of automata networks with various classical neural networks, we

cannot use traditional learning algorithms to train generic random networks for a

computational task. Learning in classical neural nets often rely on the assumptions

about the processing elements of the network and the full connectivity between

elements [35]. It is through these assumptions that convergence theorems could

be proven. However, we do not like to make any assumption for the processing

elements and their connectivity to reason about their programming. This allows

our result to be general and independent of underlying technology.

1.3 CONTRIBUTIONS

Our contributions in this work are as follows:

1. We proposed an augmented RBN model to perform computational tasks with

inputs and outputs.

2. We developed necessary software frameworks to use RBNs and feedforward

networks in a task solving context (see Section 3.5).

3. We integrated our C++ RBN framework into the ParadisEO [17] framework

for evolutionary computation.

4. We reproduced the learning capability results for feedforward random net-

works with exact connectivity of 2 (see Section ??).

5. We extended the learning capability theory to RBNs with exact and mean

connectivities (see Sections ?? and ??).

6. We calculated phase volumes for RBNs (see Section 3.3.2).

7. We calculated the functional entropy of the RBNs as a function of 〈K〉 (see

Section 3.3.2).
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8. We introduced the cumulative learning probability, the cumulative perfect

training likelihood, the cumulative generalization score, and the cumulative

training score to study the performance of task solving in RBNs with fixed

〈K〉 evolution, independently from training sample size (see Sections ?? and

??).

9. We published the first results from the learning probability of the RBNs

in [88].

10. We published the results for RBN learning probability with various 〈K〉
in [33].

11. We studied and established optimal connectivity Kc in RBNs for information

processing (see Section 4.1).

12. We showed that computation and robustness are optimal in RBNs with crit-

ical connectivity Kc (see Section 4.1.6).

13. We showed that Kc scales as a power-law of the system size N (see Sec-

tion 4.1.3).

14. We showed that the optimal critical connectivity Kc for robust computation

corresponds to the “edge of stability” (see Sections 4.1.7 and 4.1.8).

15. We showed that the degree distribution of RBNs changes from a Poissonian

distribution to an exponential distribution (see Section 4.2).

16. We explained the evolution of exponential degree distribution using the max-

imization of entropy during the Evolutionary Steady State (ESS) (see Sec-

tion 4.2.7).

17. We showed that the population at Kc has maximum fitness diversity and,

using Fisher’s fundamental theory of natural selection, we explained why this

connectivity ensures optimal robustness and computation (see Section 4.2.7).
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18. We studied the behavior of graph topological measures for Erdös-Rényi ran-

dom graphs, exponential random graphs, and evolved RBNs as a function of

〈K〉 (see Section 4.3.2).

19. We showed that the graph topological measures show maximum variance

near Kc and postulated this to be a possible source of diversity in the fitness

of the networks (see Sections 4.3.2 and 4.3.3).
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2

RELATED WORK

2.1 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) are forms of parallel distributed models of com-

putation that are inspired by the structure of the brain. ANN research started

with the first synthesis of neuron model by the pioneering work of McCulloch and

Pitts [59]. Rosenblatt [77] incorporated this model into his perceptron (Figure 2.1).

Given an input vector of n elements and the corresponding set of presynaptic

weights {wi, 1 ≤ i ≤ n}, the output of the perceptron is calculated as follows:

o =

 1, if
∑n

i=1wixi + b > 0

0, otherwise
(2.1)

Here, each xi is one of n inputs with their corresponding weight wi. b is an inductive

bias which adjusts the firing threshold of the perceptron.

Later, Widrow [98] proposed the Madaline rule to train networks of mutliple

adaptive elements. The hallmark of ANN developement was Rumelhart’s et al. [79]

error backpropagation algorithm. This algorithm extends the Madaline rule and

the steepest descent optimization to multi-layer ANNs.

The introduction of the McCulloch-Pitts neuron independently coincided with

Alan Turing’s proposal for an “unorganized machine” [85, 90]. The “unorganized

machine” consists of networks of logical NAND gates with two inputs. Each input

is connected to a randomly selected node in the network. The links between the

nodes in this network have a switch that can be turned on or off to close or open
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(a) Perceptron

(b) Madaline

Figure 2.1: Architecture of a single layer perceptron Artificial Neural Network

(ANN).
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Figure 2.2: Turing’s B-type unorganized machine made up of randomly connected

NAND gates with switches that may turn the links on or off.

the link. This architecture is called a B-type network. Turing proposed that by

configuring the switches on the links, we can configure the network to perform any

computation. Figure 2.2 illustrates the Turing B-type network. Turing’s model is

of particular importance for this thesis because despite its simplicity, it lays out

a first computing model using unstructured circuits. Aleksander, Martland, and

many others used random logical networks to implement various computations,

such as pattern classification or associative pattern storage and retrieval [2–4, 56–

58].

2.2 HOPFIELD MODEL AND SPARSE NETWORKS

In 1982, J. J. Hopfield proposed a biologically plausible ANN model for storing and

retrieving information [37]. The importance of this model is due to the presence of

feedback connections in the network. The model therefore constitues a dynamical

system with different dynamical regimes and attractors; hence this model is some-

times called the attractor network. The Hopfield model consists of N identical

threshold neurons. Each neuron i receives a link from every other neuron. The
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coupling weight Jij characterizes the coupling strenght from the neuron j to the

neuron i. We identify the state of i-th neuron with σi and it can assume the values

“0” or “1.” The neurons update their state asynchronously according to:

σi(t+ 1) =
∑

1<j<N

Jijσj(t). (2.2)

This model is capable of storing a pattern ξ = σ1σ2 . . . σs . . . σN if the connection

weights between the neurons follow:

Jij =


∑N

s=1 (2σsi − 1)(2σsj − 1) i 6= j

0 i = j

(2.3)

After setting the weights, the network may retrieve the complete pattern ξ from

any partial pattern ξ′ set as initial condition. A later paper [38] extends this

results to multi-valued neurons. Amit et al. [5] studied the thermodynamics of the

Hopfield model using the spin-glass formalism. Amit et al. [6] and Gardner [29]

showed the Hopfield model may store an infinite number of patterns p if N →∞
due to:

p = αN. (2.4)

α is the signal-to-noise ratio that defines how much distortion is acceptable in the

retrieved patterns [48]. For binary synaptic weights, the optimal capacity is at

αc = 0.83. Near saturation, i.e., for low values of α, the system has a spin-glass

phase and a ferromagnetic phase with 2p stable states. The latter shows at least

98.5% accuracy of retrieved patterns for α < αc = 0.14 [8]. However, these results

hold for uncorrelated patterns ξ with arbitrary activity level (fraction of firing

neurons in the pattern). For low activation patterns due to finite correlation, the

number of retrievable patterns from the network will be p < 1 + a−2 [7]. Here a

is the activity of the pattern. Gardner and Derrida [31] calculated the optimal

number of storable patterns in the network with the maximum retrieval error of

εc. Fontanari [26] showed how to extend the simple pattern storage and retrieval



www.manaraa.com

11

of the Hopfield model to learning and generalization. In this approach, imprinting

partial or noisy examples of a pattern to the network makes the network deduce

the pattern itself. The generalization error in this method approaches the retrieval

error of the standard Hopfield model, i.e., ε = 0.0165, in the limit of a large number

of training samples.

Canning and Gardner [18] show that a partially connected Hopfield model has

better information storage capacity per connection. The size of the basin of at-

traction for the optimal network capacity was calculated in [30]. In addition, it

has also been shown through simulation that the storage capacity of Hopfield net-

works becomes maximal in a small-world [1] topology with long-range connections

of probability p = 0.1 [13,49].

2.3 LEARNING THEORY

Learning in ANNs includes two broad categories: supervised and unsupervised

learning. The difference between the two is how the ANN treats the training data.

Learning is also closely related to the concept of generalization. Generalization

characterizes the behavior of the network in response to novel input data. The

relationship between learning, generalization, error, and the complexity of the

ANN has been subject of much research as part of a unifying theme referred to

as Vapnik-Chervonenkis (VC) dimension [12, 91, 94, 95]. In this section, we will

explore in more depth the different learning types and the VC dimension theory.

In supervised learning, the training examples are organized into input patterns

and corresponding expected output patterns from the network. The training pro-

cess consist of feeding the inputs to the ANN and calculating the error between the

ANN output and the expected output. The parameters (weights or functions) of

the ANN are then tuned to minimize the error of the network. All gradient descent

and back-propagation-based training algorithms fall within the class of supervised

learning.
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Unsupervised learning, on the other hand, does not comprise the notion of input

and output. The data is fed into the network and the network adapts to represent

the features of the data in some sense. For example, the Hopfield learning rule

is a type of unsupervised learning in which the weights of the networks evolve to

represent the aggregate local field of all the stored patterns in the network.

In his seminal work “A theory of learnable” [91], Valiant directly studied the

phenomenology of learning in its generic form. In his words “[. . . ] a program for

performing a task has been acquired by learning if it has been acquired by any

means other than explicit programming [91].” Valiant shows that it is possible to

design learning machines that can learn whole classes of nontrivial general purpose

concepts in polynomial time. This learning machine consists of a learning protocol

and a deduction procedure. The learning protocol specifies how to obtain informa-

tion from the outside world. The deduction procedure is the method to deduce the

a correct recognition algorithm for the concepts to be learnt. In this context “[. . . ]

concept Q has been learnt if a program for recognizing it has been deduced. . . [91].”

Closely related to the issue of learning a concept is generalization. Generalization

is a measure of how well the concept is learnt. The learning machine deduces the

concept using a few example patterns. After the learning process is completed,

if the machine can associate novel patterns to the learnt concept correctly, then

we say the machine can generalize well. Learning and generalization has, in turn,

become the method of comparing various learning algorithms.

Vapnik [94] achieved the next crucial milestone in the theory of learning and

generalization. Let us first define a prerequisite quantity, the Vapnik-Chervonenkis

(VC) dimension of a learning machine. Here we refer to this as dV C . Consider a set

of p patterns. There are 2p possible classifications over these patterns (assuming

binary classification). That is, there are 2p different ways to assign either of the

classes “0” or “1” to each of the p patterns. If a classifier C can implement all

of these classifications then the VC theory states that C shatters the space of
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patterns. Moreover, there exist a critical number of patterns p ≥ dV C for which

not a single set of p patterns can be completely classified by C. In this case the

VC dimension of C is dV C . dV C defines the capacity of a learning machine in

purely statistical terms. The Vapnik-Chervonenkis theorem (in combination with

Sauer’s lemma [80]) may express the bound for the probability of the maximum

difference between test and generalization error of the class C as a function of dV C

due to [92,96]:

P (maxc∈C |Ec(p)− εc| > µ) ≤ edV C [ln(2eα)−µ2α]. (2.5)

Here, Ec(p) is the error of the classifier c ∈ C on p different test patterns, εc is the

generalization error of the c, and α = p
dV C

. In the limit of dV C → ∞, the r.h.s of

this equation approaches zero for ln(eα) < µ2α [69]. Hence, we will have a critical

accuracy:

µc =

√
ln(eα)

α
(2.6)

for which

P (maxc∈C |Ec(p)− εc| ≤ µc) = 1. (2.7)

2.4 CELLULAR AUTOMATA

In the late 40’s, John von Neumann [97] introduced Cellular Automata (CA) as a

biologically inspired model of discrete-state discrete-time dynamical system. The

simplest type of CA or Elementary CA (ECA) [39] consists of a one dimensional

lattice of cells, each with a self-connection and two connections to its immediate

right and left neighbors. Each cell may assume either of the two states “0” and

“1.” All cells change their states at the same time according to a binary function

called the CA rule. The dynamical properties of this system depends on the initial

configuration of the lattice and the CA rule.

Stephen Wolfram [100] pioneered the investigation in local and global dynamics

of the ECA. He classified the space of CA rules into four classes. In finite time,
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CA rule classes I and II will end in a fixed-point or cyclic attractors from almost

any initial configuration. Class III rules are very sensitive to initial configuration

and will lead to the strange (chaotic) attractors. IV rules show complex dynamics

and one of the rules, i.e., 110, has been proven to be computationally universal.

Li and Packard [52] studied the structure of the ECA rule space. They or-

ganized the 256 possible rules into 88 equivalent classes according to the internal

symmetries in the rules. Based on the dynamics of the CA, they assigned each

equivalent class to five different dynamical classes of (1) null dynamics, (2) fixed-

point, (3) periodic, (4) locally chaotic, and (5) chaotic. This assignment is not

one-to-one hence the calculation of intra and inter-class transition in dynamics

follows [53].

Wootters and Langton [101] studied the sharp transition in the dynamics of

ECA rule space as a function of λ (homogeneity) of the CA rules. The phase

transition becomes sharp in the limit of infinite-valued CA. Increasing the number

of local connections pushes this transition towards λ = 0 which suggests that the

at infinite range neighborhood the transition vanishes. Langton [50] suggested

that complex computation in ECA occurs at the region of the rule space that

corresponds to the phase transition in λ. This region is called “the edge of chaos.”

However, Mitchell et al. [62, 63] refuted the edge-of-chaos-computation argument

by showing that it is possible to find CA rules in other regions of the rule space

that perform complex computation.

The first method for the automatic design of CAs for parallel computation was

proposed in [61]. This approach used genetic algorithms to evolve CA rules that

could solve the density classification task. However, since this task requires global

information processing it does not suit ECA dynamics since information transfer in

ECA is limited. For finite size CAs, perfect solutions, i.e., CA rules that solve the

task from all initial configuration of the CA, were not found. Analytical derivation

of the CA rules and the initial configuration for the ECA to perform a desired
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configuration remains an open problem.

Mesot and Teuscher [60] showed that Random Boolean Networks (RBN) out-

perform 1-D CA (with neighborhood as large as 7) in density classification. More-

over, they derived an analytical method to deduce the local rules in the network

to perform the task. In this experiment, RBN also performs better than small-

world CA [89]. This is not so surprising because RBNs have a “global” view of the

system’s state.

2.5 RANDOM BOOLEAN NETWORKS

Stuart Kauffman [40] introduced RBNs as a biologically viable model for gene

regulatory networks. RBNs may be thought of as a generalized CA in which each

cell—out of the total of N—is connected in random to K other cells; this is also

called the NK model. Kauffman himself studied many theoretical aspects of RBNs

and their applications in the context of biology [41–47,83,84].

Kauffman classified the dynamics of RBNs into three classes depending on the

values of 〈K〉. For 〈K〉 < 2, the networks are likely to find a fixed point or periodic

attractor quickly. Networks of 〈K〉 > 2 will have the chaotic dynamics in which the

networks will not find an attractor in finite time, or the the attractor will not have

a finite size. At 〈K〉 = 2, the dynamical regimes of the networks show the maximal

variance [47], this dynamical behavior called the “edge of chaos.” The source of

this diversity in dynamics is the sensitivity of the dynamics in this regime to initial

state of the networks and the structural diversity of the networks (c.f. section 4.3).

The median cycle length (number of states in the cyclic attractor) in ordered

RBN scales according to O(e
1
8
log2N), in the complex regime according to O(

√
N),

and finally in the chaotic regime according to O(0.5 × 2N). For small networks,

the cycle length in complex regime scales with N [11].

Derrida and Pomeau [21] devised an annealed approximation method for de-

termining the dynamical regime of the RBNs as a function of 〈K〉 and p, i.e., the
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fraction of “1”s in the Boolean function of the nodes. Critical connectivity Kc that

leads to the complex dynamics of the network is calculated as follows:

Kc(p) =
1

2p(1− p) . (2.8)

If this condition holds, the network is a critical network. However, this result

applies to a network at the thermodynamic limit, i.e., N → ∞. For finite size

networks, the Derrida criticality [21] is calculated by averaging the spreading of

the two states of the network that are one Hamming distance apart after one time

step, normalized by the network size [83]. If the result is equal to 1, then the

network is in the complex regime, if it is smaller than 1, the network is in ordered

regime, and if it is larger than one the network is in the chaotic regime.

Flyvbjerg [25] derived another order parameter for measuring complex dynam-

ics of the network based on the frozen component. In this second method, a

network is said to have complex dynamics if 50% of the nodes of the network

change their state and the other 50% do not.

In the classical NK model, the probability p of connecting every two nodes

is independent. Hence, the resulting network reflects the Erdös-Rényi graph [23]

characterized by the binomial degree distribution given by:

P (K) =

 N

K

 pK(1− p)N−K , (2.9)

where P (K) is the probability of a node having degree K. In the limit of large N ,

this probability distribution is approximated by the Poissonian degree distribution

[1, 64]:

P (Ki = K) =
〈K〉Ke−〈K〉
〈K〉! . (2.10)

Here, 〈K〉 is the expected degree of the network. However, many natural networks

have power-law degree distribution in the form of:

P (K) ≈ 〈K〉−λ. (2.11)
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This makes the Erdös-Rényi’s model an implausible model for comparison with

real-world data. Consequently, Serra et al. [81,82] studied the dynamics of power-

law RBNs and found that these RBNs have fewer attractors than the classical

RBNs. They also found that the transient length and the cycle periods of the at-

tractors are significantly shorter in power-law RBNs. Darabos et al. [20] conducted

a comprehensive study of dynamics of RBNs with Poissonian and power-law degree

distribution under normal and noisy update rules.

Patarnello and Carnevali [70] conducted the first general study of learning ca-

pability of random feedforward networks. In this study, Paternello and Carnevalli

used a simulated annealing and genetic algorithms to evolve feedforward networks

of logical gates to solve computational tasks such as addition [71]. The ability of

these networks to generalize depends on the complexity of the task, the number of

gates in the network, and the number of the training examples used during opti-

mization. The ability of the networks to learn from partial inputs and generalize

to the entire input space is attributed to the second law of thermodynamics [19].

Later, Van den Broeck and Kawai [93] confirmed the learning in feedforward net-

works and developed a theoretical framework for analyzing problem complexity

and predicting the learning capability of feedforward Boolean networks.

Despite all the discoveries and achievements in the field of ANN, the methods of

training general computational networks without a-priori knowledge of their struc-

ture and compute nodes remains obscure. All the local learning today depends on

the fully connected or otherwise well structured networks with uniform compute

elements. Moreover, the compute elements are assumed to calculate some differen-

tiable function of their inputs. In what follows we will explore ways to use RBNs as

a basic model of random networks of generic random automata for computational

tasks.
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3

METHODS AND MEASURES

3.1 UNORGANIZED NETWORKS OF RANDOM AUTOMATA

We define the class of networks under investigation in this study as Random Au-

tomata Networks (RAN). Although the reader will find shortly that the model is

very similar to Kauffman’s NK model and to Random Boolean Networks (RBN)

[40], the addition of external inputs and outputs to the network introduces sub-

tlties in the definition of 〈K〉, N , and the implementation of the networks (see

Section 3.3.3) that might be confusing, had we used the same naming convention

to refer to our model. However, for the purpose of this thesis, we restrict our

definition to only binary automata and Boolean functions as follows. We define an

RAN as N automata with binary state {0, 1}. The dynamics of these automata

changes according to:

F : {0, 1}N 7→ {0, 1}N , (3.1)

where

F = {fi|1 ≤ i ≤ N}, (3.2)

and each fi represent a Boolean function of ki inputs randomly chosen from the

set of N automata. We randomly choose the ki input automata and the Boolean

function fi for each automaton i. Note that the number of inputs may vary from

automata to automata. The state of the system is updated synchronously; that is

to say each automata σi updates its state at time t+ 1 according to:
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Figure 3.1: The structure of the Random Boolean Network (RBN).

σi(t+ 1) = fi(σ1(t), σ2(t), . . . , σki(t)) (3.3)

Figure 3.1 shows the structure of a RBN with inputs and outputs. It is convenient

to identify the canonical ensemble of these networks with the number of automata

N and the average input per automata

〈K〉 =
1

N

N∑
i=1

ki. (3.4)

For practical reasons, we limit the maximum number of inputs per automaton to

kmax = 8. Since we will use complex network theory to study the properties of our

RAN, we establish the proper analogy between the two here. RAN will map into

a directed random graph with N nodes and average connectivity 〈K〉. Note that

there is only one link between two nodes in one direction. We do allow self-loops

in this model.

3.1.1 Output Interpretation

The dynamics of the recurrent network that we described depends on three degrees

of freedom: the set of Boolean functions of the automata, the connections within

the automata, and the initial configuration of the automata (automata states at
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t = 0). For most of the experiments in the studies we have only changed the

connectivity and the functions of the automata. We made this choice merely to

reduce the search space. To read the output of the network, we set the state “0”

on all the automata and simulate the network for t1 time steps proportional to N

for the dynamics of the network to settle in an attractor. We then run the network

for t2 time steps, also, proportional to N , and observe the activity of the output

bits (Figure 3.2). If the state of an output node is “1” for 50% or longer of the

observation interval t2, we say the output of that automata is “1”, otherwise we

say the output is “0.” The inputs of the task we want to solve are wired to random

automata in the network. We set the value of the inputs at the beginning of the

settlement interval t1 and keep them fixed until the end of the observation interval

t2.

In [19, 70,71, 93], the authors conduct their experiment using feedforward ran-

dom Boolean networks. These are networks that have a layered structure. To

construct these networks, we assign each node a random rank value between 0 and

R > 0. We choose the source of the connection to each node to be strictly from

nodes with rank lower than the rank of the destination node. This ensures that

there will be no feedback loops in the network. We reserve layer 0 and R for the

input and output nodes respectively. In feedforward networks, we will not need to

wait for the dynamics of the network to settle down. Yet, we have to wait long

enough for the maximum of R + 1 time steps to make sure that the network has

processed the inputs through all the layers to the output nodes. After this time, the

output nodes will have a stable value and will not need any special interpretation.

3.2 LEARNING CAPABILITY MEASURES

Patarnello and Carnevali [70] introduced the notion of learning probability as a

way of describing the learning and generalization capability of random feedfor-

ward networks. They defined the learning probability as the probability of the
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Figure 3.2: Measuring the output of the network. The y-axis shows the state of

the output node oscilate between “0” and “1.” Because the dynamical nature of

the networks, we wait t1 timesteps for the dynamics of the networks to reach an

attractor and measure the activity during t2 time steps. If the activity is “1” for

50% or more of the time steps during t2, the outputs will be “1”, otherwise “0.”

training process yielding a network with perfect generalization, given that the

training achieves perfect fitness. Let’s first remember the Bayes rule for calculat-

ing the posterior probability P (X = x) that a random variable X assumes value x

given the evidence E = e. Note that the evidence is also described using random

variables.

P (X = x|E = e) =
P (E = e|X = x)P (X = x)

P (E = e)
. (3.5)

Next, we formalize the learning probability definition as follows:

P (g = 1|f = 1) =
P (f = 1|g = 1)P (g = 1)

P (f = 1)
, (3.6)

where f and g refer to the fitness and generalization score of a network respec-

tively. f is calculated by subtracting the error of the output of the network for

a subset of all possible inputs from 1, while g is calculated by subtracting the

error for all possible inputs from 1 (see Section 3.4). The error is the Hamming

distance between the output of the network and the desired output. Note that

this definition of the generalization g is different from the popular definition in the

machine learning community, which does not include the performance of a system

on inputs that have been used during training for generalization. Here, we calcu-

late the generalization over all possible inputs. We argue that our definition of the
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generalization is better suited for measuring performance of systems that operate

under noise. In such systems, the training patterns do not neccessarily produce the

same output during testing. Therefore, testing the performance on all the patterns

can give us a better estimate of the robustness of the system. Since for systems

operating under (internal and external) noise-free conditions P (f = 1|g = 1) = 1,

we can simplify equation 3.6 and write:

P (g = 1|f = 1) =
P (g = 1)

P (f = 1)
. (3.7)

By looking only at the equation 3.7 we will overlook the full statistics since equa-

tion 3.7 only depends on perfect cases, i.e, f = 1 and g = 1. We will therefore

define the perfect training likelihood :

P (f = 1) =

∑R
r=1 [fr]

R
. (3.8)

Here, fr is the fitness of the best network at the end of run r of the experiment

and R is the total number of runs. The floor function [] only counts the fr = 1 in

the summation. The importance of P (f = 1) becomes obvious when we determine

how many runs of experiment is enough to gather sufficient statistics. For example

for difficult tasks, where we have P (f = 1) = 0, the learning probability will be

undefined. The learning probability depends on the capacity of the learning ma-

chine and the number of training patterns. The latter is, by convention, expressed

as the fraction s = m
m′ , where m is the number of training patterns and m′ the

number of all possible patterns; for a specific problem [92].

An example of the calculation of learning probability and perfect training likli-

hood is given in Figure 3.3. The goal is to learn a function of three input variables.

The training sample size is 4 out of 8 possible patterns therefore s = 0.5. We run

the experiment 4 times. At the end of each run we record the fitness and the

generalization score of the best networks according to equations 3.17 and 3.18.

Note that both fitness and generalization scores are normalized to be between 0.0
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Figure 3.3: Calculating learning probability. The circles mark the erroneous out-

puts for the even-odd task with 3 inputs. There are 8 possible input combinations.

The training sample size in this example is 4. For each generation a new train-

ing sample is generated. We repeat the experiment four times to calculate the

probability P (g = 1|f = 1).

and 1.0 inclusively. We see from the figure that in 2 runs out of the 4, we find

networks with fitness of 1.0 and in one run we have a generalization score of 1.0.

Consequently, the perfect training likelihood is 0.5 and the learning probability is

0.5.

The probabilistic measures, such as the learning probability described above,

only focus on the perfect cases and hence describe the performance of the training

process rather than the effect of the training on the network performance. Thus, we

define the mean training score as β(s) = 1
r

∑
r ffinal and the mean generalization

score as β′(s) = 1
r

∑
r gfinal, where ffinal and gfinal are the training fitness and the

generalization fitness of the best networks respectively at the end of training. For

instance, in the example in Figure 3.3, the mean training score is 1
4
×(0.75+0.75+

1 + 1) = 0.875 and the mean generalization score is 1
4
× (0.875 + 0.5 + 1 + 0.875) =

0.8125.

To compare the overall network performance across all s values, we introduce



www.manaraa.com

24

a cumulative measure for all four measures as defined above. The cumulative

measure is obtained by a simple trapezoidal integration [99] to calculate the area

under the curve for the learning probability, the perfect training likelihood, the

mean generalization score, and mean training score.

3.3 COMPUTATIONAL TASKS

3.3.1 Task Description

We use five computational tasks to evaluate the fitness of the networks over the

course of simulated evolution. These tasks are:

1. The bitwise AND task.

2. The mapping task.

3. The even-odd task.

4. The full-adder.

5. The CA rule 85.

We give a description of these tasks in this section. Furthermore, we analyze

these tasks in terms of their complexity from a learning and information theoretic

perspective.

The bitwise AND task is defined over two sets of binary numbers of l bits.

To implement that task correctly, a machine would have to calculate the correct

AND operation of each respective bit of all possible pairs of numbers in the sets.

This means that there are I = 22l different combinations that the system has to

get right.

As for the permutation task, the system receives a l-bit long binary input

pattern and has to generate the same number of “0”s and “1”s in an l-bit output
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A B C output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.1: The truth table for the even-odd task.

in any order. Note that an input pattern with n “1”s may not have a unique

solution. In fact there are  l

n

 =
l!

(l − n)!n!
(3.9)

different input patterns with l bits and n “1”s each of which may be also considered

a candidate solution to any of these patterns.

The even-odd task, sometimes called the parity task or addition modulo 2,

computes the summation over the l input bits modulo 2. Algorithmically we can

say that the system should output a “1” if there is an odd number of “1”s in the

input, otherwise the system outputs “0.” This is traditionally known as the XOR

task in the ANN literature and is not linearly separable. Table 3.1 depicts the

truth table of the 3-bit even-odd task.

The full-adder task is the implementation of a one bit full-adder circuit. The

inputs of this task are two 1-bit binary numbers A and B and an input carry Cin.

The output is a 1-bit summation S and an output carry Cout. The values of S and
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A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 3.2: The truth table for the full-adder.

Cout are calculated as follows:

S = A⊕B ⊕ Cin
Cout = (A ·B) + (Cin · (A⊕B))

(3.10)

Here, ⊕ represents the exclusive OR, · represents the AND, and the + represents

the OR Boolean functions. The truth table of the full-adder is given in Table 3.2.

The CA rule 85 task is an implementation of the rule 85 of elementary cellular

automata. Using Wolfram’s encoding of CA rules, rule 85 takes three inputs A,

B, and C and outputs C̄. This task is defined for three inputs, but its value only

depends on one input. Table 3.3 shows the truth table of CA rule 85.

In the next two sections, we briefly describe how the complexity of these tasks

are different from one another. We first look at the perspective of a classifier to see

how likely it is to find a machine that can perform a task. We will then analyze

through information theoretic calculations how difficult each of these tasks would

be for a classifier.



www.manaraa.com

27

A B C output = C̄

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Table 3.3: The truth table for CA rule 85.

3.3.2 Task Complexity: The Learning Machine

Van den Broeck [93] introduced the concept of phase volume V of a Boolean

function. V is the number of classifiers that can produce this function correctly.

He defined the probability of the Boolean function F of volume VF , P (VF ), to be

the fraction of the class of classifiers that realize F ,

P (VF ) ∝ V −αF , (3.11)

with α ≈ 0.7. This is calculated via sampling for the class of feed-forward random

Boolean networks in which each node receives two inputs. This means that if

we keep randomly sampling the space of feedforward Boolean networks, we find

networks that realize F with probability P (VF ). This indicates how difficult it is for

this class of networks to solve this task using a stochastic optimization technique.

This also could be interpreted as the complexity of F .

Yet the concept of the phase volume can become useful in calculating the

richness of a class of classifiers. We can then calculate the entropy of realizable
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Boolean functions of i variable in this class using:

S = −
22
i−1∑
f=0

pf log2pf . (3.12)

Here, pf denotes the probability that a classifier realizes function f . We calculate

pf by creating random networks and simulating each network to measure its output.

pf is the fraction of the networks that realize the function f . The absolute bounds

on the value of S is easy to calculate:

0 ≤ S ≤ 2i. (3.13)

The exact value, however, depends on the distribution of the pf over all possible

functions. The maximum value occurs for a uniform distribution and the minimum

value occurs if only one function is implementable. For example, for i = 3, if the

class of networks with 〈K〉 = 2.0 and N = 20 implements all the functions with

uniform probability distribution, then the entropy will attain its maximum value

of S = 8 bits. This implies that if we simulate 256,000 networks, we will see that

each of the 256 functions is realized by 100 networks. On the other extreme, if the

class only implements one function, then S = 0 bits.

Figure 3.4 illustrates the entropy of the realizable Boolean functions of three

variables using RBNs as the computing model. The sample is taken over 30,000

networks with N = 20 for each 〈K〉 = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. For each

network, we sample 300 initial configurations chosen from Independent and Iden-

tical Distributions (IID). The entropy starts at 1.5 for 〈K〉 = 1.0 and rises to a

maximum of about 4 at 〈K〉 = 3.5. For 〈K〉 ≥ 3.5, the entropy declines again sug-

gesting increasing chaoticity in the dynamics of the system beyond a point at which

the computational capacity (measred by the entropy of the realized functions) de-

clines. For most values for 〈K〉, the entropy is much lower than the maximum

(i.e., 8), possible 8, and even the maximum empirical entropy is only half of the
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Figure 3.4: Boolean function landscape in the space of RBNs. In-degree distribu-

tion of the network is binomial and N = 20.

theoretical maximum value. This suggests that the distribution of realization of

the 256 possible functions is highly skewed.

The functional landscape of the model depicted in Figure 3.4 does not show

how many different functions are realized by a particular network, rather, it focuses

on the entire class of networks. However, we could ask the question, “Given a

particular network, how many different functions does that network implement if

we start from different initial configurations?” This question is of great importance

when we analyze the stability and the reliability of computations using RBNs.

Thus, we calculate the entropy of realizable functions for individual networks over

300 different initial configurations and average that over 10,000 networks for each

connectivity class 〈K〉 = 0.5, 1.0, 1.5, ..., 7. Figure 3.6 illustrates the results. The

value of the entropies for various 〈K〉 are well below 1. For all initial configurations,

if a network realizes the same function, the functional entropy of the network

will be zero. If each intial configuration causes the network to realize a different
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Figure 3.5: Standard deviation of the entropy of the realizable functions for indi-

vidual networks. K is the average connectivity of the network.

function, the functional entropy of the network will be near 8. This suggests that

the dominant factor in the dynamical behavior of the network is the structure of

the network and not the initial configuration. Thus, there are only a few sets of

distincts dynamical attractors that are dictated by the structure of the networks.

At 〈K〉 = 4.5, the attractors of the ensemble are most sensitive to their intial

configurations.

In order to get a clearer picture of the landscape of the realizable functions, we

plot the frequency distribution of the functions and sort them according to their

frequency. Figure 3.7(a) shows the frequency distribution of the realizable func-

tions, sorted according to their pf , for networks of various 〈K〉. This distribution

is a rapidly decreasing distribution. On the log-linear scale we see regions where

the frequency decreases exponentially with stepwise discontinuity. We plotted the

same frequencies on the log-log scale (Figure 3.7(b)) to make the discontinuity

more visible. The discontinuity suggest a hierarchical landscape or the likelihood
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Figure 3.6: Entropy of the realizable functions for one network starting with 300

different initial configurations. The degree distribution of the network is binomial

N = 20. K is the average connectivity of the network.

of realization of the Boolean functions with plateaus and sharp jumps to neighbor-

ing regions. The hierarchical levels belong to the classes of the Boolean functions

that have similar probability of realization (pf ) by the networks. This suggests that

from the perspective of a learning machine, there are distinct “difficulty” classes in

the space of 3-input Boolean functions. This finding matches similar observations

as presented in [74,93] for feedforward networks with two inputs per node.

3.3.3 Solving Tasks

A computational task is characterized by a static or dynamic mapping of I binary

inputs to O binary outputs. To realize this mapping through RAN, we have to

connect the input bits to the network. There are four different methods by which

this could be done. Throughout our study we only use the second method, but

we mention the other three for completeness and explain the implication of using
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Figure 3.7: Hierarchical structure in the functional landscape of RBNs for different

connectivities in log-linear scale (a) and log-log scale (b). The y-axis shows P (V ),

the probability of function f having phase volume of V . The x-axis shows the

functions ranked based on their position in a list sorted from largest to smallest

P (V ). This suggests the existance of distinct “difficulty” classes in the space of

3-input Boolean functions from the perspective of RBNs as learning machines that

compute these functions.
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each method:

1. One way to connect the inputs is to assume I additional nodes outside of

the network and wire them randomly to the N nodes in the network. Con-

sequently, one can either count the links between this input nodes and the

automata nodes in the network as part of the automata’s 〈K〉 inputs or we

can ignore these links. If we ignore these links, the graph-theoretical defi-

nition of E = K × N , where E is the number of edges in the graph, does

hold.

2. The second way of connecting the inputs is to count the connections in the

in-degree of the receiving compute nodes in the network, since these inputs

actually influence the state of those nodes. In this case E > K ×N .

3. The third method consists of assuming that the I inputs are part of the

network. This new network will have I+N automata. The practical problem

with this model is that when we are connecting links to the nodes randomly,

some of these links will be assigned to the I nodes and will therefore not

be used. This is because the signals in the I nodes are fixed. Although the

training algorithm, as we will see, might get rid of these extra links, this will

cause a topological bias in the dispersion of the links.

4. Finally, we can include the number of input nodes I are in the system size

N , but make sure they have no input links themselves. In this case, we have

E = K × (I +N), there will be some nodes in the graph that will have more

than one link with their neighbors.

As a practical matter, we choose not to include the I input nodes in the count of

the network nodes. However, we count the links from these nodes to the N network

nodes as part of the E graph links. Note that this choice implies 〈K〉 ≥ E
N

.
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We define a computational task by an I-input to O-output mapping. Let the

set

M ′ = {0, 1}I 7→ {0, 1}O (3.14)

represent the entire input-output mappings for a specific task. Therefore the num-

ber mappings for the task will be

m′ = |M ′| = 2I . (3.15)

At each generation of the evolution, the GA chooses a random subset M ∈ M ′ of

size T to calculate the fitness of the individuals in the population. We call M the

training sample and T = |M | training sample size.

3.4 EVOLVING NETWORKS TO PERFORM COMPUTATION US-

ING GENETIC ALGORITHMS

The degrees of freedom in RBNs create a complexity catastrophe as the size of

the network increases [47]. For every 〈K〉 and N , the number of possible RBNs,

G(N,K), is roughly given by [32]:

|G(N,K)| =
(

22KN !

(N − k)!

)N

. (3.16)

Any exhaustive or heuristic search in this space with a rugged fitness landscape [47]

is clearly hopeless. We use Genetic Algorithms to explore this large space of

networks ensemble for networks that can perform specific computational tasks

(see Section 3.4).

Genetic Algorithms (GA) are a class of population based metaheuristic opti-

mization techniques [10] inspired by natural evolution. In this study we use GA to

evolve networks to perform specific computational tasks. GA has the benefit that
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it can stochastically explore the search space using a population based optimiza-

tion and find optimal solutions according to an objective function. This makes the

GA well suited for searching in spaces that undergo a complexity catastrophe.

Here, we describe the fitness function, and genetic operators for our population.

We define the fitness as follows:

f = 1− 1

m

∑
M

(expected− actual)2. (3.17)

Here, expected refers to the expected value of the output and actual refers to

actual value measured from the output of the network. The summation term in

equation 3.17 is the sum of the Hamming distances between expected and actual

outputs, normalized by the number of training patterns. To observe how the

generalization of the system changes over time, we calculate the generalization

score for each individual by

g = 1− 1

m′

∑
M ′

(expected− actual)2. (3.18)

This generalization does not in any way affect the operation of the GA, but rather

informs us about how well the individuals can perform the required computation.

Before we can use the GA to evolve networks, we need to create a genetic

representation of the network. We do this by encoding the directed graph that

represents the network in an adjacency list and append a concatenated list of the

output column of the Look-Up Table (LUT) of the Boolean function of each node

in the network to the end of it (Figure 3.8). This implies that the genomes of the

individual networks have different lenghts.

Normally, the evolution takes place from generation to the next by applying

four operations:
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Figure 3.8: Genomic representation of the RBN.

1. Selection: choosing individuals in the population for recombination and mu-

tation.

2. Recombination (crossover): combining two selected individuals to create off-

springs for the next generation.

3. Mutation: randomly changing a selected individual to create a new offspring

for the next generation.

4. Replacement: selecting individuals from the parent and offspring populations

for the next generation.

Our experiments show that using a recombination operator in this study erad-

icates diversity in the population and hinders fitness maximization. We therefore

use pure mutation in our experiments. The mutation takes place on the links and

the function part of the genome independently. To mutate the functions, the op-

erator randomly picks a position in the functional part of the genome and flips the

binary value at that position. For the mutation of the connections in the network,

we define two different operators. The length of the genome of each individual
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changes over generations due to changes in the number of links and the size of the

LUTs. First, we use a rewiring operator that chooses a link and randomly picks

a new node either for its destination or for the source. Note that the mutation

under this operator preserves the average connectivity of the network. The second

operator is the link addition or deletion operator. This operator randomly chooses

a location in the adjacency list and either deletes the link at that location or inserts

a new links between two randomly chosen nodes at the location. The process of

adding and deleting the link may occur 1 + α times with probability p(α) = 0.5α

2
.

The number of generations and the population size during the evolution depends

on the specific experiments and we will clarify them in section ??.

3.5 SOFTWARE FRAMEWORK

For our simulations we used a C++ network simulator initially developed at the

Teuscher-Lab for high performance network simulation. We extended the original

framework with the following features:

1. Augmented RBN model to with external input and output signals.

2. Layered structure (necessary to simulate feedforward networks).

3. Output interpretation module (necessary to interpret output of the RBN).

4. ParadisEO [17] GA integration.

5. Genome export module to convert networks into their genetic representation.

6. Recombination operator.

7. Three different structural mutation schemas.

8. Functional mutation scheme.

9. Derrida calculation modules.
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10. Network topology export module for graph-theoretical studies.

11. Repair operator for recovering damaged feedforward networks after the mu-

tation and recombination.

12. A flexible task solving module that interfaces the RBN and GA engines, with

ability to define mapping or sequential tasks for the networks.

To perform evolutionary optimization on the networks we chose the ParadisEO

metaheuristic optimization framework. ParadisEO is a open source software frame-

work for different metaheuristic optimizations. ParadisEO can be accessed at

http://ParadisEO.gforge.inria.fr/. We used the open source Brain Connec-

tivity Toolbox for our graph-theoretical studies. The Brain Connectivity Tool-

box software and documentations can be found at https://sites.google.com/

a/brain-connectivity-toolbox.net/bct/Home.
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4

EVOLUTION OF NETWORKS WITH VARIABLE 〈K〉

4.1 FINDING THE OPTIMAL NETWORK CONNECTIVITY

In chapter ?? we reviewed the results from the evolution of the networks with

the constraint of fixed connectivity 〈K〉 using a rewiring mutation scheme for the

structure of the networks as described in section ??. In this chapter, we relax this

constraint and let the average connectivity change. We observe that this type of

evolution results in the convergence of the connectivity to a critical value Kc that

depends on the system size N . We argue that for large systems this critical value

converges to Kc ≈ 1.87. This critical connectivity has been hypothesized to be

conducive to complex computation while maintaining maximal adaptability and

robustness to structural and dynamical perturbation [47].

To let the average connectivity of the network change during the evolution, we

let the number of the links in the network change. For the fixed 〈K〉 evolution, we

used the rewiring mutation scheme in which randomly chosen endpoints of a link

in the network were attached to another randomly chosen node. We will abandon

this mutation scheme in this chapter and use a link addition or deletion scheme

instead.

4.1.1 Revised Mutation Scheme

We define a mutation step to include adding a link between two randomly chosen

nodes or deleting an randomly chosen link form the network. To let the evolution

converge faster, we let mutation repeat the process 1+α times with probability
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p(α) = 0.5α, where α > 1. This probabilistic scheme will be particularly helpful

as we move to experiments with larger networks. The functional mutation is

unchanged and performed as before by flipping the random entry of the look-up

table of a randomly chosen node.

Our ultimate goal is to find and study a critical average connectivity that

emerges from the evolution of the networks as a result of the fitness maximiza-

tion. Note that in our evolutionary setup, the population is subject to significant

amount of disturbance due to our high mutation rate, i.e., 0.8. Therefore, the

existence of a critical connectivity Kc that can maximize the fitness is also an

evidence that networks with Kc maintain maximum robustness and adaptabil-

ity while performing complex computations. Although the critical connectivity

of Kc = 2 for the networks have been hypothesized and observed by many re-

searchers [11, 47, 51, 54, 55, 67], as far as we know, this is the first time that the

critical connectivity has been established for networks in a concrete computational

context, i.e., with specific tasks and not in a closed system (such as classical RBNs

with no external inputs).

4.1.2 Evolutionary Steady State

As a preliminary stage, we wanted to find a target connectivity that the evolu-

tionary pressure pushes the networks toward. First, we have to observe that the

population under mutation and selection reaches the Evolutionary Steady State

(ESS). ESS is a state of stable maximum fitness during the evolution. We begins

by evolving two populations of networks for the even-odd task. The first popu-

lation starts from the initial connectivity 〈K〉 = 1.0 and the second population

starts from the initial connectivity 〈K〉 = 7.0. We repeat this experiment with

different networks of size N ∈ {5, 10, 20, . . . , 60}. The networks have to evolve to

solve the even-odd task with three inputs. We carry on the training with T = 1,

T = 4, and T = 8. For T = 4 and T = 8, the population dynamics soon reach
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Figure 4.1: Population dynamics of the fitness. The average fitness reaches a stable

maximum suggesting the existence of Evolutionary Steady State (ESS) dynamics

after 10,000 generations.

the ESS. During the ESS, the connectivity shows convergence toward a specific

Kc value. Therefore, for the rest of experiment, we can only use 〈K〉 = 1.0 as a

starting connectivity.

Next, we have to study the critical connectivity and its role in the context of

learning, generalization, adaptation, and robustness. We evolve networks of size

N ∈ {5, 10, 20, 30, . . . , 100} with an initial connectivity of 〈K〉 = 1.0. We run

the experiments for 30,000 generations. For this number of generations, even for

the largest network sizes, we see a very strong convergence the maximum fitness

(Figure 4.1). The reason that the fitness values in Figure 4.1 are lower than 1 is

that they are averaged over 30 runs. Clearly, for generations higher than 5,000, we
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Figure 4.2: Evolution of 〈K〉 in the population. During the steady state the value

of 〈K〉 is stable (for very large and very small networks) or fluctuates around a

central point (for N = 10).

observe an ESS. We also observe a convergence of the 〈K〉 throughout the evolution

and in the final population (Figure 4.2). According to these two facts, we have

a convergence to a connectivity that is favored by evolution. This connectivity

not only improves the computing power of the networks but also its resilience to

a fairly high perturbation rate of 0.8. We can now study the scaling properties of

the critical Kc with respect to the system size, the training sample size, and the

task complexity.

4.1.3 Scaling Property of the Critical Connectivity

There are two different ways to look at this critical connectivity. First, we can

take the snapshot of the final population and look at its properties. Figure 4.4

shows the result of the average final 〈K〉 for all the networks of various sizes for

the extreme cases T = 1 and T = 8. The purpose of the scaling plot is to derive

how the critical connectivity changes with the system size. Four natural equations
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that are candidates to describe our data shown in Figure 4.4 are:

1. Model 1 (M1): Power-law equation with three free parameters a, b, and c of

the form:

Kc = aN b + c. (4.1)

2. Model 2 (M2): Exponential equation with four free parameters a, b, c, and

d of the form:

Kc = aebN + cedN . (4.2)

3. Model 3 (M3): Power-law equation with two free parameters a and b with

the form:

Kc = aN b. (4.3)

4. Model 4 (M4): Exponential equation with two free parameters a, b of the

form:

Kc = aebN . (4.4)

After careful analysis of the sum squared error, the R-squared measure for

goodness of fit, and the Akaike Information Criteria (AIC), we picked Eq. 4.1 to

be the best model for our data (see Section 4.1.4). Luckily, Eq. 4.1 naturally fits

out desired description for scaling to the parameter c. The parameter c is the

value of Kc in the thermodynamic limit. In other words, this equation represent a

power-law decay with the value of Kc when N →∞ and b < 0.

We plot the data and the resulting curves from the fit equation on a log-log

scale (Figure 4.4). Two general scaling behaviors are evident. First, the curve for

the even-odd and the full-adder tasks with T = 8 shows a concave shape with a

decreasing rate of decay. Second, the curve for the even-odd and the full-adder

tasks with T = 1 and the R85 task with T = 1 and T = 8 show a convex shape

with an increasing rate of decay. The latter case asks for a deeper investigation
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because it goes against what is observed from the average connectivity in the final

population.

To further investigate the scaling result, specially for the contradictory cases

of the convex curves, we look at the distribution of the average connectivity in

the evolved population. We expect that the distribution of 〈K〉 for the limiting

network size in this study (N = 100) to be a sharply peaked binomial-like dis-

tribution around the calculated parameter c (Table 4.2). For T = 1 and T = 8

for individuals with generalization score g > 0.8, we create frequency distributions

from the connectivity of the evolved population as well as their Derrida sensitiv-

ity [83] (Figure 4.6). For T = 8, both full-adder and even-odd tasks derive the

networks toward a peak at the critical connectivity. For the R85 task, however,

the distribution is wider. For T = 1 there is no individual in the population that

can fully realize the even-odd and the full-adder task. The R85 task is realized,

but in a very wide distribution around 〈K〉. We conclude that for T = 8, the

convergence for the R85 task is very weak, and in the T = 1 case, we do not see

any convergence at all. The lack of convergence in the connectivity invalidates the

scaling plot for a training sample size of T = 1 for the even-odd, the full-adder

tasks, and all training sample sizes of the R85 task. We conclude that the infor-

mation in the training sample sizes is not enough to impose evolutionary pressure

on the networks.

The lack of convergence of 〈K〉 during the steady state rises an interesting

question about the meaning of the free parameter c and the final average 〈K〉
in the evolved population. What we know for sure is that the the real value of

〈K〉 is changing and does not converge for T = 1, or for any training size of the

task R85. However, the value seems to fluctuate around a certain target 〈K〉 and

does not visit all possible values with the same probability. The evolution of the

networks with respect to the objective function calculated on one input pattern

(T = 1), although this imposes a very low evolutionary pressure, still causes some
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Figure 4.3: Fitness-free evolution of the networks reveals that 〈K〉 that occurrence

of 〈K〉 is a binomial random variable. The average of the distribution is 4.0, which

is in the middle of minimum and maximum possible in-degree per node in our

networks.
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of the networks to perform worse than the others, and therefore be deleted from

the population. But what if all the networks were equally fit? Or in other words,

what if we do not subject the networks to a fitness evaluation at all?

4.1.4 Choosing the Right Model for Scaling Data Using AIC

In Section 4.1.3, we picked the model 1 (M1) with three degrees of freedom (free

parameters) of the form: aN b + c to describe the scaling behavior of the Kc as a

function of N . In this section, we describe a rigorous statistical method behind

our choice for the M1 model. We used Akaike Information Criteria (AIC) [36] to

pick the most plausible model that describes our data. AIC is a relative measure

of goodness of fit of a statistical model rooted in information entropy. Loosly

speaking, AIC describes the trade-off between bias and variance in a statistical

model. This can also be thought of as the trade-off between accuracy and the

complexity of the model. The method we describe here is well described in [16].

The general form of calculating the AIC measure for a model is as follows:

AIC = −2ln(likelihood) + 2DF, (4.5)

where the likelihood is the ratio between the prediction of the model and the real

data, and DF is the number of free parameters in the model. AIC can also be

calculated from the residuals of a fit using:

AIC = 2ln(
SSE

n
) + 2DF. (4.6)

Here, SSE is the sum squared of the residuals from the fit and n is the sample size.

AIC requires a bias-adjustment for small sample sizes ( n
DF

< 40). In our case, this

adjusted AIC is calculated using:

AICadj = nln(
SSE

n
) + 2DF +

2DF (DF + 1)

(n−DF − 1)
. (4.7)
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The best model to describe a dataset is selected via the relative distance of the

models with the “truth.” To calculate this relative distance, we have to first sub-

tract the minimum adjusted AIC minAICadj from the AICadj for all the models

as follows:

∆AICadj = AICadj −minAICadj (4.8)

To quantify the plausibility of each model, we calculate the relative likelihood of

our model given the data. This is given by:

` = e−0.5∆AICadj . (4.9)

For the final comparison, the models are now weighted based on their calculated `

as follows:

w`i =
`i∑

i∈models `i
. (4.10)

w`i is the Akaike weight for model i, `i is the relative likelihood of model i. The

denominator is the sum over the relative likelihood of all the models and ensures

the addativity of the weights. Table 4.1 shows the w`i for models M1, M2, M3, and

M4 (see Section 4.1.3) for the same datasets used in calculating final parameter

for the power-law in Table 4.3 the plots on Figure 4.5. According to this analysis,

model M1 that we chose to be the right scaling model is orders of magnitude more

successful in describing the data except for R85 task. R85 task is not described

by the power-law because of the lack of convergence during the ESS. However, the

exponential law of the model M3 seems to be describing the scaling behavior of the

R85 task reasonably well. We have included the results for calculation of AICadj,

∆AICadj, and ` for the datasets that we used for fitting in Appendix A.

4.1.5 Fitness-Free Evolution

We repeat the evolution of the networks of size N = 100 for 50,000 generations

from different initial K ∈ {0.1, 1, 4, 7, 7.9}. Since we bypass the fitness evaluation,
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task T w`M1
w`M2

w`M3
w`M4

FA 4 0.9827 0.0076 0.0096 0.0000

EO 4 0.9997 0.0003 0.0000 0.0000

R85 4 0.1359 0.0007 0.8634 0.0000

FA 8 0.9577 0.0421 0.0002 0.0000

EO 8 0.9901 0.0099 0.0000 0.0000

R85 8 0.0775 0.0004 0.9221 0.0000

Table 4.1: AIC weights calculated for the four proposed models.

each individual is assigned the fitness value 0 in each generation. Therefore, the

selection process is a purely stochastic process with no implicit or explicit bias.

As a reminder to the reader, the maximum connectivity per node for our networks

is 8, meaning each node in the network can have any connectivity between 0 to

8. We therefore expect a system with unconstrained evolution (through selection

and replacement due to evaluated fitness) to visit all possible states in the average

connectivity space 0 ≤ K ≤ 8. We expect the average of the connectivity to be

〈K〉 = 4.0 during the evolution and the fluctuations to form a binomial distribu-

tion. Studying the average 〈K〉 of the final population does not give us enough

information about the distribution because: (1) 30 runs is not enough for gath-

ering statistics for average 〈K〉 and (2) the final population is just a snapshot of

the last state of the evolution and does not give information about the dynamics

of the evolution. However, since in one view this evolution is in the steady state

for all the experiments, we can look at the connectivity of the networks in the

population throughout the evolution and see how it evolves in the 〈K〉 space. The

result of this experiment is shown in Figure 4.3. The evolution of 〈K〉 of course

is oscillatory. We create a histogram from all the experiments combined and we

find that the average connectivity forms a binomial distribution with the mean

of µ = 4. If we separate the distributions by their initial connectivity value, we
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find that the distribution still looks like a binomial distribution, but with a slight

bias toward the initial 〈K〉. This works since we can attribute the bias to the

few initial generation of the evolution before the connectivity of the individuals in

the population fully disperse in the 〈K〉 space. Moreover, it is obvious that we

do not have a situation in which the 〈K〉 of the population converges to smaller

and smaller values with increasing system size increases as predicted by the convex

curves. On the contrary, 〈K〉 should go higher than the c for the T = 8 full-adder

and the even-odd tasks, and get closer to 4.0, if not exactly 4.0.

The results in Figure 4.4 are calculated for the average connectivity of the final

population after the evolution. But since the evolution shows a steady state, we

can use the same trick that we used to study the fitness-free evolution. That is,

we can detect the steady state of the evolution of the population with respect to

the objective function and track the desired property (in this case 〈K〉) during the

evolution. We collect all the 〈K〉 data during the course of the evolution and create

a distribution of 〈K〉 by binning the data. Between the raw data and the frequency

distribution out of the binned data, we have five different ways to pick the right

Kc. From the frequency distribution, we could either calculate the position of the

peak of the distribution or choose the expected value of 〈K〉 from the calculated

distribution. From the raw data, we could use the mean of the 〈K〉 or the median

of the 〈K〉. Alternatively, we can use a Gaussian mixture method to model the raw

data and calculate the mean and the variance. Unfortunately, decisions based on

the frequency distribution depend on the bin size used to create the distribution. If

we could use the raw data we could overcome this shortcoming. A few experiments

show that using the mixture models is the most robust approach against variations

in the data.

We recalculate the scaling of Kc using the mean of the Gaussian mixture model

of the raw data (Figure 4.2). Instead of T = 1, however, we calculate Kc for T = 4.

This will allow us to relate Kc to learning and generalization. The calculated free
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parameters of the scaling model are listed in Table 4.3. To show the statistical

convergence in a more visual way, we have plotted the distribution of the 〈K〉 after

the evolution for both T = 4 (Figure 4.7(a)) and T = 8 (Figure 4.6(a)). The peak

of the distribution near 〈K〉 = 2 suggests most networks after the training have

the critical connectivity and our assumption of convergence of the connectivity in

the population to Kc is valid. The distribution of the Derrida measure for the

dynamics of the networks is also calculated for T = 4 (Figure 4.7(b)) and T = 8

(Figures 4.6(b)). The peak of the distribution around 1 on the Derrida distribution

shows that most networks after the training are in the complex dynamical regime.

These observations suggest that learning and generalization correlates with com-

plex dynamics on the networks. For T = 1, however, the distributions for the

final population 〈K〉 (Figure 4.8(a)) and Derrida (Figure 4.8(b)) measure does not

indicate any real convergence due to the lack of information in the training set to

put evolutionary pressure on the population. The result of this study could show

us the learning, adaptation and robustness capability in the population. Moreover,

we could also see how the networks generalize to the novel inputs.

4.1.6 Robustness

We have calculated two different distributions for the fitness and the generalization

score for all the tasks. First, the probability that the the fitness or generalization

score of the population during each generation in the steady state is higher than

its mean value throughout the steady state p(f ≥ f̄ ;K) and second, p(g ≥ ḡ;K).

These two probabilities are a measure of robustness of the computation with re-

spect to learning and generalization. The distributions are shown in Figures 4.9

for the even-odd task, Figure 4.10 for the full-adder task, and Figure 4.11 for the

R85 task. Note that the population is only seeing half of the input patterns, yet

it generalizes the computation to the novel inputs. We see that the distribution is
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very sharp near Kc. This means T = 4 provides enough information to the net-

works during the evolution to achieve a convergence in connectivity. For R85, the

distribution looks a little wider. This agrees with the earlier observation of weaker

convergence in the connectivity during the learning of this task. This robustness

measure, however, does not directly describe the quality of the generalization.

We have also calculated the probability distribution that the population achieves

perfect fitness and generalization score, namely, p(f = 1;K) and p(g = 1;K). We

observe the same sharp peak around Kc. This is a strong evidence that both the

learning and the generalization capability of the population is maximal exactly at,

or very close to, Kc. Furthermore, Kc is certainly lower than the “edge of chaos,”

i.e., 〈K〉=2. Rohlf et al. [75] introduced the “edge of stability” Kc = 1.875 for

RBNs where the damage spreading is independent of system size. The authors

argued that this critical connectivity maximizes the robustness in the networks

against perturbations. Our experiments also give solid evidence that the the com-

putation at the “edge of stability” is maximally robust against perturbations.

4.1.7 Verifying that Kc < 2.0

The observation of Kc < 2.0 (Table 4.4) does not exactly match the hypothesis

that complex computation is enhanced in the Kc = 2 region. Also, if the value

is biased by our finite size system, we would expect Kc to be higher than 2. To

verify this fact, we evolve networks of size N = 100 with the even-odd and the full-

adder tasks with eight training patterns and an initial connectivity of 〈K〉 = 3.0.

The selection of 〈K〉 = 3.0 is due to its symmetry to 〈K〉 = 1.0 with respect

to 〈K〉 = 2.0 the connectivity of the complex dynamical regime. We combine

the result of the evolution from the initial 〈K〉 = 1.0 and 〈K〉 = 3.0 and create

the distribution of 〈K〉 as before. The location of the peak of the distribution

is Kc = 1.87 for the even-odd task and Kc = 1.9 for the full-adder task. This

implies that for complex computations, Kc is less than 2 for large systems. The
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task T a b c

FA 1 −0.1092± 0.4772 0.6606± 0.8084 5.3930± 1.6510

EO 1 −0.0654± 0.4592 0.8244± 1.3576 5.3750± 2.6230

R85 1 −0.0002± 0.0029 1.9380± 2.8160 4.0680± 0.9620

FA 8 44.6200± 24.1300 −1.2570± 0.3069 1.8090± 0.2130

EO 8 85.4900± 219.9100 −1.8660± 1.5105 1.9800± 0.2970

R85 8 −1.981E − 12± 2.5208E − 10 5.6320± 27.5080 2.928± 0.4620

Table 4.2: Parameters of the finite size scaling using final population mean statis-

tics with 95% confidence interval bounds. The estimation is done with the nonlin-

ear least square method. The estimated parameters are for a power-law equation

of the form axb + c.

result is independent of the initial connectivity of the population. We have to be

careful, however, that if the initial connectivity is much higher than Kc for larger

system sizes, the evolution should continue for longer than 30,000 generations for

the systems to converge to Kc.

4.1.8 Discussion

In this section, we showed that the the evolution of a network population with a

computation-dependent fitness will lead to a critical connectivity Kc in which the

networks operate in a complex dynamical regime. We showed that these complex

dynamics optimize robust learning and generalization in a noisy environment. The

exact value of Kc depends on the amount of information that is available to the

population via the training samples. For very complex tasks, such as the even-odd

and the full-adder tasks, for which the perfect (f = 1, g = 1) computation requires

a great deal of stability and reliability, Kc ≈ 1.87, “the edge of stability,” to achieve

maximum robustness against perturbations.
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Figure 4.4: Finite size scaling of 〈K〉 as a function of N for the three tasks (full-

adder, even-odd, and rule 85) and the training size using final population statistics.

Points represent the data of the evolved networks, lines represent the fits. The

finite size scaling for 〈K〉 shows that it scales with a power-law as a function of the

system size N . The dashed lines represent the power-law fit of the form axb + c.

We used a N/Nmax weighting for the data to emphasize the larger network sizes

in estimation.
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(b) Finite size scaling for T = 8.

Figure 4.5: Finite size scaling using Gaussian mixture model of population statis-

tics during Evolutionary Steady State (ESS). We used a N/Nmax weighting for the

data to emphasize the larger network sizes in estimation.
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task T a b c

FA 4 23.25± 29.97 −1.005± 0.7401 2.078± 0.69

EO 4 16.56± 15.19 −0.8003± 0.5521 1.517± 0.851

R85 4 −0.1497± 2.4687 0.4834± 2.8056 3.713± 5.264

FA 8 33.13± 15.85 −1.173± 0.2713 2.017± 0.19

EO 8 31.62± 35.88 −1.228± 0.6435 1.855± 0.352

R85 8 −0.01119± 0.16419 0.9383± 2.8967 3.163± 1.36

Table 4.3: Parameters of the finite size scaling using Gaussian mixture model

of population statistics during the Evolutionary Steady State (ESS) with 95%

confidence interval bounds. The estimation is done with the nonlinear least square

method. The estimated parameters are for a power-law equation of the form axb+c.

task T = 1 T = 4 T = 8

FA 1.37 1.80 1.90

EO 1.68 1.64 1.87

R85 2.02 2.17 2.25

Table 4.4: Empirical peak of the 〈K〉 distribution during ESS for N = 100. For

T = 8 for the even-odd and the full-adder tasks, we have re-adjusted the values

based on the experimental data with an initial connectivity of 〈K〉 = 1.0 and

〈K〉 = 3.0. The distribution is created by binning the 〈K〉 data with bin size of

0.01.
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Figure 4.6: The final 〈K〉 distribution and the Derrida sensitivity [83] distribution

of N = 100 networks with a generalization score of G ≥ 0.8. The provided

information in the input patterns is sufficient to push the networks toward critical

connectivity. The peak of the Derrida sensitivity measure at 1 suggests that these

networks show critical dynamics as well.
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Figure 4.7: The final 〈K〉 distribution and the Derrida sensitivity [83] distribution

of N = 100 networks with a generalization score of G ≥ 0.8. The provided

information in the input patterns is sufficient to push the networks toward critical

connectivity. The peak of the Derrida sensitivity measure at 1 suggests that these

networks show critical dynamics as well.
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Figure 4.8: The final 〈K〉 distribution and the Derrida sensitivity [83] distribution

of N = 100 networks with a generalization score of G ≥ 0.8. The networks are

unable to successfully compute the full-adder and the even-odd task. The wide dis-

tribution of 〈K〉 and Derrida sensitivity measure suggests there is no convergence

in terms of connectivity and dynamics in the evolved population. The information

training samples with size T = 1 is not to impose evolutionary pressure on the

population toward criticality.
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Figure 4.9: Probability distribution of network learning and generalization as a

function of 〈K〉 for the even-odd task trained with four patterns.
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Figure 4.10: Probability distribution of network learning and generalization as a

function of 〈K〉 for the full-adder task trained with four patterns.
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Figure 4.11: Probability distribution of network learning and generalization as a

function of 〈K〉 for the R85 task trained with four patterns.



www.manaraa.com

61

4.2 EVOLUTION OF THE DEGREE DISTRIBUTION

4.2.1 Network Evolution Leads to Exponential Degree Distribution

In this section, we investigate the evolution of the degree distribution of the nodes

under the new mutation scheme (i.e., link addition and deletion). We will show

that the variable 〈K〉 mutation drives the degree distribution from a Poissonian

to an exponential form. We also compare the results with what we have seen in

Chapter ??.

We saw in our earlier experiments that under the 〈K〉-preserving rewiring mu-

tation scheme, the degree distribution of the networks in the population does not

change, i.e., the final population maintains a Poissonian degree distribution. The

Poissonian degree distribution is merely the result of random selection during mu-

tation and fitness maximization with respect to the computational tasks.

To study the degree distribution of the final population, we choose all the

networks with 〈K〉 = 2.0± 0.2 and average their degree distributions. Figure 4.12

shows the degree distribution, on a log-linear scale, of the population at the end

of the evolution. We also included the degree distribution for Poissonian random

graphs and exponential random graphs. As we can see, the evolved population

shows an exponential degree distribution (indicated by a line in the log-linear

plot). A similar result has been reported by Bornholdt and Rohlf [14] during

the evolution of networks toward critical connectivities. Moreover, we observe

the same degree distribution across the two extreme training sizes T = 1 and

T = 8 for all three tasks. The blue dash-dotted line shows the expected degree

distribution of an exponential degree distribution obtained on a 95% confidence

interval for 〈K〉 = 2.0. The average connectivity of the final population is not

exactly 2.0, however. For the full-adder task and the even-odd task trained with

eight input patterns, we see that the slope of the degree distribution is higher

than the slope of the 〈K〉 = 2.0 exponential random graphs, despite the fact
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that the connectivity of these networks is less then 2.0. We would expect the

slope to be smaller than exponential random graphs since during evolution average

connectivity of the population evolves to 〈K〉 < 2.0. This discrepancy is due to

the maximum in-degree limit in our networks, namely Kmax = 8.

4.2.2 Exponential Degree Distribution in Network Growth Model

The emergence of an exponential degree distribution has also been observed in a

unbiased network growth model [22]. If we change the perspective, we see that the

network growth model also applies to our mutation scheme because the probability

of the addition or deletion of links in our network are equal and independent.

During the evolutionary steady state, if we assume that we could apply all the

link deletions until the networks are depleted completely of their links, and then

start adding links randomly, we have effectively approximated the network growth

model. As we add links to the networks without bias, we simply connect pairs

of nodes. This will initially lead to the creation of the islands of small connected

networks that are themselves not connected together. Each of these networks

keep growing as additional links will connect unconnected clusters. This process,

mathematically and experimentally, results in an exponential degree distribution

on each growing island. As we continue adding links, we reach a state at which the

subnetworks connect together to form a single connected component that spans all

of the nodes in the original network.

This explanation, however, leads to a contradiction with the result from the

construction of random graphs by Erdös and Rényi [23]. The scenario that we

described is exactly what happens in an Erdös-Rényi (ER) network with one dis-

tinction: in the construction of an ER network there is no link depletion stage.

ER networks are constructed by adding links to a network in an unbiased fashion.

The apparent contradiction between the two scenarios is a result of an implied

assumption in the link depletion/restoration process. The implied assumption is
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that when we connect smaller networks with exponential degree distribution, we

get a larger network of exponential degree distribution. Evidently this is not true,

otherwise ER networks would have the same exponential distribution.

4.2.3 Exponential Distributions and Dynamical Stability

A second explanation for the emergence of an exponential degree distribution could

be related to the maximization of robustness during the steady state [76]. Since the

mutation rate in our population is very high, the structure of the ensemble of the

networks in the population from one generation to the next can vary profoundly.

This structural difference has immense implications in terms of the dynamics of the

network and consequently the produced output signals. In order for the networks to

resist this variation in the dynamics, the selection process must secure some source

of stability for the dynamics of the networks through some invariant signals. In

exponential networks, most of the nodes will not have any inputs at all. They

may, however, be connected to the rest of the network providing some constant

signals during the operation of the network. This is exactly the source of stability

in the dynamics. Although the evolved networks are in the complex regime and

the dynamics may jump from one attractor to another as a result of fairly simple

mutation steps, the existence of a large number of nodes with constant signals

makes the network resilient to random structural perturbations. This may also be

solid evidence for higher resilience in exponential random graphs as opposed to ER

graphs with Poissonian degree distribution. To confirm this explanation, we have

to show that indeed most of the nodes are connected to the network with respect to

their output links. We verify this by generating the out-degree distribution of the

ensemble of the networks in the population. Figure 4.13 illustrates the out-degree
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distribution of the three tasks trained with T = 1 and T = 8. The ER graph out-

degree distribution is included for comparison. We observe two things: (1) the out-

degree distribution does not show any change from the null model and (2) the out-

degree distribution has a Poissonian form with few nodes that are not connected to

other nodes relative to the network size. Thus, this is concrete evidence linking the

complex interplay of our dynamics-dependent objective function and the random

selection. The same trends in the evolution of the in-degree and the out-degree

distribution is observed in [76].

4.2.4 Exponential Degree Distribution and Task Complexity

In Section 4.1.6, we showed the emergence of robustness in the population as a

result of evolution dynamics, however, seems to be independent of the complexity

of the computational task. Bornholdt and Sneppen [15] name robustness as a

principle in evolutionary processes. Robustness in this study is measured by the

probability of the individuals having a fitness greater or equal to the average fitness

during the ESS (mean fitness of the individuals in the population averaged over the

last 15,000 generations). For all tasks, we observed this probability distribution

to show a sharp peak near Kc. In addition, our study of the evolution using

different system sizes also shows the emergence of the same in-degree and out-

degree distributions in the networks. Even the networks that evolve to solve the

R85 task show the same in-degree and out-degree distribution that results in the

same level of robustness. The same effect is also observed in training with full-adder

and even-odd task with only one training example. In R85 task, the amount of

information provided to the population is minimal. However, despite the minimal

imposed constraint on the evolution of the population, the same level of robustness

evolves and develops in the networks. Thus, we can conclude that the emergence

of robustness in networks that compute under unbiased evolution is completely

independent of the task complexity and constraints, the training samples, and the
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Figure 4.12: The in-degree distribution of the networks after the learning pro-

cess changes from a Poissonian to an exponential distribution for all three com-

putational tasks. All networks start from a random topology using the Erdös-

Rényi model (ER). XRG corresponds to the maximum entropy exponential random

graphs.

network size N .

4.2.5 Degree Distribution and 〈K〉-Preserving Mutation

One unanswered question is “Why under the 〈K〉-preserving mutation do we not

observe the rise of an exponential degree distribution?” After all, even when 〈K〉
does not change, the networks can still use the stability of the exponential networks

to compute reliably in the face of structural disturbances. Is there something

inherent in fixing 〈K〉 that does not let the degree distribution evolve? The number

of links added to or deleted from the networks is, on average, equal during the
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Figure 4.13: The out-degree distribution of the networks after the learning process

changes from a Poissonian to an exponential distribution for all three computa-

tional tasks. All networks start from a random topology using the Erdös-Rényi

model (ER).
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steady state. Therefore, one would expect to see each mutation step caused by

rewiring (changing a source or a destination of a link) done by two mutation steps

in addition and deletion of the links. If the exponential degree distribution is

preferred by the selection during link addition and deletion over the generations,

then the rewiring scheme should also lead to the same result. However, in the study

of evolution under fixed 〈K〉 (Chapter ??), our focus was to study the learning

probability. The calculations in learning probability do not let the GA reach the

steady state, because we stop the training as soon as we have a fitness of one or

if we reached the maximum of 2,000 generations. Thus, the reason we did not see

the degree distribution evolution is that the GA stopped too early.

To investigate this issue, we evolve two populations of networks with size N =

20 (to be comparable to earlier fixed 〈K〉 experiments). The first population is

mutated using the rewiring scheme, the second population is mutated using the

addition and deletion of links, but we perform this in a symmetric way to keep

〈K〉 fixed. That is, we add the same number of links to the network that we delete

from the network in every mutation step. We evolve both populations for 5,000

generations. The population that used the rewiring scheme does not show any

change in degree distribution. The second population that uses the symmetric link

addition and deletion does, however, show an exponential degree distribution. The

shape of the Poissonian distribution in the first population is slightly deformed. We

conclude that that the evolution might simply be taking more time. We repeat this

experiment, but this time for 20,000 generations. We still see the same result in

the evolved population. The population that is mutated using the rewiring scheme

does not show any significant change in the degree distribution. On the other

hand, the population that is mutated using the addition and deletion of the link,

even with preserving 〈K〉, still evolves toward an exponential degree distribution.
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Figure 4.14: The in-degree distribution of the networks after fitness-free mutation

changes from a Poissonian to an exponential distribution for all three computa-

tional tasks. All networks start from a random topology using the Erdös-Rényi

model (ER). Evolution of the exponential degree distribution is independent of an

evolutionary pressure.



www.manaraa.com

69

0 2 4 6 8

1

5

10

20
30
40

K

fr
e

q
u

e
n

c
y

 

 

〈K 〉=2.0
〈K 〉=4.0

Figure 4.15: The out-degree distribution of the networks after fitness-free mutation

remains a Poissonnian distribution. The out-degree does not evolve with or without

a fitness function.
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Figure 4.16: The in-degree distribution of the networks in an evolved population in

comparison to maximum entropy exponential graphs (XRG) with the same connec-

tivity 〈K〉. The evolution of the exponential in-degree distribution is independent

of the task. The mismatch between the theoretical estimated in-degree distribu-

tion for XRG networks and evolved networks is the result of upper bound on the

node in-degree Kmax = 8.
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4.2.6 Exponential Degree Distribution and Fitness-Free Evolution

We revisit our experiments with evolving populations with no fitness function.

We used this experiment before in section 4.1.3 as a null model to verify the

hypothesis of the existence of Kc. Here, we use the same trick to see if the degree

distribution of the networks change if we do not subject the population to a fitness

function, i.e., no computational task. The selection will not have any leverage to

discriminate against a subset of the population. Therefore, we have a population

that freely evolves in a random fashion. The mutation in the individuals follow

the same addition and deletion of the links and the average connectivity 〈K〉 is

free to change as well. As before, we create the degree distribution of the networks

over the entire final population (Figure 4.14). Although the selection is unaware

of the dynamics in the networks, the in-degree distribution of evolved populations

is of an exponential form. We have also plotted the in-degree distribution for

〈K〉 = 2.0 to comparison to the previous results. The in-degree distribution for

〈K〉 = 4.0 is included since the average connectivity of the population revolves

around 〈K〉 = 4.0 in a binomial form (see Section 4.1.3). Thus, we conclude that

the evolution of the exponential form in the in-degree distribution is more related

to the mutation scheme than to the selection process.

Figure 4.15 illustrates the out-degree of the population after a fitness-free evolu-

tion. We have plotted the out-degree distribution of both 〈K〉 = 2.0 and 〈K〉 = 4.0

networks for comparison. The out-degree distribution does not show any evolu-

tion and continues to resemble a Poissonian. It is not clear why the out-degree

distribution is unaffected under the mutation of the links. But the conclusion of

this observation is, as before, that the evolution of the degree distributions some-

how only depends on the mutation scheme and not the selection, and is therefore

independent of the computation performed by the network.
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4.2.7 Exponential Distributions in Statistical Physics

The exponential distribution is a topic that is exhaustively studied in statistical

physics and thermodynamics to describe the state of a system using its microstates.

More specifically, one would like to study the average energy of a system that is

in thermodynamic equilibrium with its environment. The environment in this

context has the characteristic of a heat bath. That is, its temperature does not

change regardless of the amount of energy that it absorbs or dissipates to the

objects that it comes into contact with. When a system comes to contact with the

heat bath, the energy starts to flow from the system in the direction of the lower

temperature. By definition, this flow of energy does not change the temperature

of the heat bath, but the temperature of the object in contact with the heat bath

will increase or decrease until it is equal to the temperature of the heat bath.

From that moment on, the energy flow between the object and heat bath will

be balanced. That is, the heat bath and the object will continue to exchange

energy, but in a manner that keeps the net transferred energy zero. In other

words, the same amount of energy that goes from the object to the heat bath

(the environment) will be absorbed by the object from the heat bath and thus the

temperature of the object remains constant. This constant energy is the average

energy of the system over time. The system, however, continues to evolve and

exchange energy with the environment and therefore its exact energy will change

from time to time. The second law of thermodynamics states that the evolution of

the system in thermodynamic equilibrium is such that the probability distribution

of the system over its microstates assumes maximum entropy over time. This

probability distribution for the microstates of the system dictates the most likely

state of the system because of the fact that its entropy is maximum. This is due to

the fact that the number of states in this distribution is maximum and therefore

most likely covers every state in which the system is likely to be found. However,

this distribution of the states has to satisfy one constraint, namely the average of
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the expectation value of the distribution should be equal to the average energy of

the system.

The same argument can be applied to the networks as they evolve to compute

the desired tasks. Park and Newman [68] showed how to apply the maximum

entropy principle to derive properties of complex networks. Recall the fitness

function in our study is 1−E, where E is the error of the network. The evolution

of the system is such that the error becomes zero over time and from then on the

system will be in a thermodynamic equilibrium with its objective function (the

environment) [92]. This is what we before called the evolutionary steady state

(ESS). During this steady state, the average desired observable (〈K〉 in our study)

does not change. The number of links added to the system is equal to the number

of links deleted from the system over time. We can therefore apply the maximum

entropy argument and calculate the expected degree distribution that maximizes

the entropy of the microstates (in-degrees of the nodes) in a way that satisfies the

average connectivity in the system Kc.

4.2.8 Discussion

In this section, we observed the evolution of exponential degree distribution during

the variable 〈K〉 mutation. We proposed several explanation for this observation

such as the selection for stability and the maximum entropy principle, and we

supported the arguments by comparing our results to various null models. Our

study introduced new questions that are yet to be answered. Why does the rewiring

mutation not allow a freer evolution in the degree distribution? What is inherently

so different between changing the terminals of the links one by one or both at the

same time? Why is the convergence of the average connectivity to Kc depends on

the task complexity, but the degree distribution does not? These remain as open

questions that are beyond the scope of this thesis.
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4.3 EVOLUTION OF THE STRUCTURAL PROPERTIES

We take the study of topology further by extending the investigation of the evo-

lution of the degree distribution to the graph-theoretical properties of the evolved

networks. We study four graph measures that seem to have the most interest-

ing behavior: the eccentricity, the characteristic path length, the participation

coefficient, and the betweenness centrality [78]. We will see how the evolution of

the networks lead the population to reach a compromise between the Poissonian

random graphs (ER) and the eXponential Random Graphs (XRG). Furthermore,

through the study of structural properties, we show how Kc relates to maximum

robustness and optimal adaptation and learning in the evolutionary dynamics of

the population. We will also explain the relationship between our findings and

Fisher’s fundamental theorem of natural selection [24].

4.3.1 Graph Measures

We begin by giving a brief overview of each of the graph measures under study. Ec-

centricity and characteristic path length are both measures of network functional

integration [78], meaning how inter-related the nodes are in the network. Eccen-

tricity is the maximum shortest path length between a node and any other node in

the network. The characteristic path length is the average distance between any

two nodes in the network. The participation coefficient of a node in the graph is

the measure of centrality in the network. The participation coefficient of a node i

with ki links is calculated in [78] as follows:

yi = 1−
∑
m∈M

(
ki(m)

ki

)2

, (4.11)

where M is the set of modules in the network [65, 66] and ki(m) is the number of

links between node i and the nodes in the module m. The higher the participation,

the more inter-modular dependency (coupling), while lower values show a higher
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cohesion of modules, which suggests high intra-module integration and low inter-

module coupling. The betweenness centrality is a measure of centrality for a node

i in the network. It is calculated in [78] as follows:

bi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= j, h 6= i, j 6= i

ρhj(i)

ρhj
. (4.12)

Here N is the set of nodes in the network and n = |N |. ρhj is the number of

shortest paths between h and j and ρhj(i) is the number of shortest paths between

h and j that passes through i. This measure is an indicator of the importance of

the function of a node for the rest of the nodes in the network. We study the node

related measures, the betweenness centrality and the participation coefficient by

taking the average of measure over all the nodes in the network.

4.3.2 Evolution of Graph Measures

We now study how these graph measures vary with average connectivity in the null

networks, the ER and the XRG, and in the evolved networks. Figure 4.17 shows

the average eccentricity of the ER and XRG network ensembles as the function

of 〈K〉. The ER networks show a very sharp rise of the eccentricity in the region

1 ≤ K ≤ 2.0. For 〈K〉 > 2.0, the rise slows down and reaches a peak at a

value slightly higher than 2.0 followed by a exponential decrease for 〈K〉 > 2.0.

The XRG graphs show a milder increase than the ER networks in the value of

eccentricity until K ≈ 2.0 and a very slow decrease for 〈K〉 > 2.0. In an ER

network, therefore, near 〈K〉 = 2.0, the communication between nodes on average

slows down in comparison to the XRG networks. This is because the signal from

a node has to travel through many hops to reach the other nodes. XRG networks

are therefore better for global communication in the network. We see that for both

extreme cases with training sample size T = 1 and T = 8, the evolved population

shows a decrease in the eccentricity. The maximum decrease from the ER model
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is around 〈K〉 = 2.0. The standard deviation of the eccentricity measure is shown

in Figure 4.18. We see that for both null ensembles and the evolved populations,

the deviation is maximized near 〈K〉 = 2.0 with the maximum value belonging to

the population trained using T = 1. This suggests that not only the evolution is

reducing the eccentricity, but it is doing that in a very selective way by maintaining

a diverse population.

The betweenness centrality of the null ensembles as well as the evolved popu-

lations are presented in Figure 4.19. Betweenness centrality of both ER and XRG

ensembles show very similar behavior to eccentricity in that they increase with

〈K〉 up to K ≈ 2.0. As before, the ER betweenness shows a sharp decrease for

〈K〉 > 2.0 in comparison to XRG networks. In XRG networks for 〈K〉 > 2.0, the

betweenness is independent of the connectivity. We see for both evolved popula-

tions the betweenness is almost in the middle between XRG and ER. This suggests

that the networks maintain a balanced betweenness in comparison to ER and XRG.

The reduced betweenness is explained by the evolution of the exponential distribu-

tion. In exponential degree distributions, a higher portion of nodes have no inputs

in comparison to Poisson distributions, therefore, the nodes will not be part of

any shortest paths in the network. The standard deviation of the betweenness

in the networks shows a very sharp peak around K ≈ 2.0 for ER and evolved

networks. The XRG networks have maximum standard deviation in betweenness

near K ≈ 2.0, but the peak is not as sharp as for ER networks (Figure 4.20). We

see that the evolution of the population drives the networks to a state of balancing

trade-offs between ER and XRG networks.

The average participation coefficient in the networks for the XRG networks

shows an exponential decrease as the function of 〈K〉 (Figure 4.21). For the ER

graphs on the other hand, we see a decreasing trend up to K ≈ 2.0 and then

a slow increase for 〈K〉 > 2.0. The evolved population shows a slightly higher

values of participation than the ER graphs. This indicates the evolution of higher
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inter-modular communication in the networks in comparison to the ER graphs.

The standard deviation of the participation coefficient is a decreasing function of

connectivity in ER and XRG graphs (Figure 4.22). We see, however, that in the

T = 8 population, this value shows a maximum at 〈K〉 = 2.0.

Figure 4.23 illustrates the average characteristic path length in the networks

under study. Both the ER and XRG graphs show a peak around K ≈ 2.0. The

characteristic path length for ER graphs is about 1.5 times larger than the XRG at

the peak. The evolved networks show a fair balance between ER and XRG values

for this measure. The standard deviation of the characteristic path length in the

population is maximum in 1.0 < K < 2.0 interval followed by a sharp decrease for

for 〈K〉 > Kpeak. In general, the deviation in the evolved population is lower than

for ER and XRG networks, which means the evolution narrows down the diversity

on the population with respect to this measure. Thus, the balance right in the

middle of the ER and XRG graphs seems to be most desirable for computation.

4.3.3 Discussion

By studying and comparing the functional integration and the node centrality

measures in the networks, we gained a deeper insight into the evolution of the

networks. We see that both the ER and XRG graphs show a diminishing return

in their integration and centrality at K ≈ 2.0. Moreover, the topological diversity

of both ER and XRG networks becomes maximal in the same connectivity region.

We evolved population of networks to satisfy robust computation. The population

achieves this desired property by compromising the topological properties between

the ER and the XRG graphs. This trade-off allows the population to benefit from

the best properties of two inherently different network structures. Finally, the

inherent maximal diversity in the topology of the network near the critical region

of the connectivity optimizes the adaptation and robustness in the population.
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Figure 4.17: The average eccentricity of the two null model ER and XRG graphs

and the evolved populations. Evolved networks maintain a trade-off between ER

and XRG graphs, suggesting a balance in functional interdependency between the

nodes in the network.
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Figure 4.18: The standard deviation of the eccentricity of the two null model ER

and XRG graphs and the evolved populations. Maximal diversity in eccentricity in

both ER and XRG graphs at 〈K〉 = 2.0 makes networks in this region more evolv-

able. The Fisher information maximization [27] as a result of selection increases

the diversity in the evolved population in comparison to ER and XRG graphs.



www.manaraa.com

80

0 1 2 3 4 5 6 7 8
−0.01

0

0.01

0.02

0.03

0.04

〈 K〉

m
e
a
n
 b

e
tw

e
e
n
n
e
s
s

 

 

T8

T1

XRG

ER

Figure 4.19: The betweenness centrality of the evolved population evolves to a

middle value between the ER and the XRG networks. This suggests a trade-off in

functional interdependence of the nodes in the networks that maximizes the ability

to perform complex computation.
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Figure 4.20: Maximum diversity in betweenness centrality at 〈K〉 = 2.0 suggests

that this region is the best for the adaptation of the population.
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Figure 4.21: The average participation coefficient of the two null model ER and

XRG graphs and the evolved populations. Although the degree distribution of

the evolved population becomes exponential, the networks maintain participation

characteristics of ER graphs, suggesting that the population take advantage of the

best features in ER and XRG to optimize adaptation and computation.
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Figure 4.22: Maximum diversity in the ER and XRG network ensembles for lower

connectivity is a possible source of convergence of the Kc to values lower than 2.0.
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Figure 4.23: The average characteristic path length of the two null model ER

and XRG graphs and the evolved populations. The population maintain a middle

ground between ER and XRG networks with respect to characteristic path length

suggesting that the population benefits from the features in topological structures

of both ER and XRG networks.
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Figure 4.24: Maximum diversity for lower connectivity suggests networks with

lower connectivity are well suited for robust computation.
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Fisher’s fundamental theorem of natural selection states that the rate of im-

provement in the population is equal to its genetic variance [27, 28, 72, 73]. The

evolution of Kc toward 2.0 causes the population to maintain maximum diversity

during the steady state. As a result, the rate of improvement in the population

is optimized and the population maintains a high robustness in the face of an

extremely noisy environment. The selection will also push the networks toward a

balance between both ER and XRG graphs to make use of the best of the properties

between the two types of graphs.
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5

CONCLUSIONS

We have presented a series of arguments and evidence pertaining to the influence

of the topology and connectivity of the random networks in computation. To

the best of our knowledge, this is the first study that extends the RBN model to

perform specific computational tasks. We investigated the learning and generaliza-

tion capabilities of feedforward networks and RBNs. Furthermore we showed that

random networks are capable of robust computation against perturbations. We ex-

plored the effects of the mutation and selection on the topology and connectivity

of the network and explained the evolution of critical connectivity and exponential

degree distribution in the networks. In addition, we described the implication of

Kc = 2.0 for the robustness using the inherent properties of both ER and XRG

random graphs.

These findings have important implications for emerging computational models.

The self-assembly of nano-wires and nanoscale components will lead to structures

that are not entirely controllable. We showed that through the control of observable

macrostates, such as the average connectivity and the distribution of the connec-

tivity between components of a self-assembled network, we are able to produce

devices that are optimal for making building blocks for computation, e.g., simple

logic gates. This computation is programmable through various self-assembly and

evolutionary techniques. Furthermore, the computation in these classes of devices

is extremely robust against failures and other perturbations.

We exhaustively studied the characteristic behavior of Random Automata Net-

works (RAN) from an evolutionary perspective in a learning and generalization
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context. We based this study on the premise by Teuscher et al. [87] that future

nanoelectronics fabrication will use self-assembly techniques that lead to unstruc-

tured circuits. In self-assembly, both the fabrication process and the final product

are prone to failures and defects. RAN information processing in an evolutionary

context present us with a unique opportunity to study the computational proper-

ties of RAN in noisy environments.

We started by following the footsteps of Patarnello and Carnevali [70] and Van

den Broeck and Kawai [93] by replicating learning and generalization in randomly

constructed feedforward circuits. We then extended our work to RBN as a re-

stricted case of RAN. By modeling these unstructured circuits using RAN, we

showed that these systems are capable of learning and generalization in a tradi-

tional task-solving context. However, the existence of recurrency in the networks

leads to a complexity catastrophe [47]. The explosion of the solution space hinders

the exploration of this space even by the metaheuristics algorithms, and as a result,

RBN do not show the same level of learning that feedforward networks show.

In addition to learning and generalization, we studied the adaptation and the

robustness in RBNs. We discovered that RBNs — that evolve to solve 3-input

Boolean tasks — show maximum balance between computation and robustness

to perturbations when the average connectivity in the network is near a criti-

cal connectivity Kc ≈ 1.87 for large systems. This finding conforms with the

postulation of the “edge of stability” by Rohlf et al. [75]. Moreover, while the

connectivity in the networks evolves toward Kc during the evolutionary steady

state, the in-degree distribution drifts away from a Poissonian form and becomes

exponential. Throughout this process, various graph topological measures, such

as the participation coefficient, the eccentricity, the characteristic path length,

and the betweenness centrality find a compromised values between the values of

the same measures for Poissonian and exponential random graphs. We conjecture

that the existence of maximal topological diversity in the population near K ≈ 2
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is a possible source for maintaining genetic diversity in the population and hence

we conjecture that maximal learning, adaptation, and robustness occurs for this

connectivity level [24,27,73].

The emergence of a critical connectivity Kc < 2.0 during the steady state

speaks for a greater trade-off in the heart of an evolutionary process: exploration

vs. exploitation. With higher connectivity, the networks realize more functions,

whereas the lower connectivity stabilizes the dynamics. In a normative applica-

tion of an evolutionary process we often adjust the trade offs between exploration

and exploitation through explicit parameters. In a descriptive use of evolutionary

algorithms (EA) in this study, balancing between these two strategies is at the

mercy of the evolutionary process itself. By adjusting the number of links, the EA

increases K to find good solutions and then shifts to lower values of K to stabilize

the population while maintaining enough evolutionary momentum to correct for

sudden disturbances in the population with respect to the objective function. This

balance is struck after the learning phase and during the steady state to ensure

robust computation in the face of perturbations.

The complete mathematical description of the evolution of degree distribution

and the topological properties demand a more in-depth study that is beyond the

scope of this thesis. Extending the computation in networks with more than two

states will be left for future work. In addition, the effect of asynchronous updating

schemes on criticality is still unanswered. We believe our findings in this study

have important applications in manufacturing and programming future nanoelec-

tronic devices. We will have more venues to explore and investigate before this

approach to electronics can be applied in realistic situations. This work however,

marks a milestone in the study of robust learning and computation in unstructured

networks.
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Appendix A

APPENDIX

Here, we have listed the number of free parameters (DF ), the sum squared er-

ror (SSE), adjusted AIC (AICadj), ∆AICadj, the relative likelihood (`), and the

Akaike weight (w`) for four models (see Section 4.1.3) fitted to the scaling scal-

ing data for the three computational tasks, i.e., the R85, the full-adder, and the

even-odd tasks and two training sample sizes T = 4 and T = 8.

model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0051 −46.8340 0.0000 1.0000 0.9901

M2 4 0.0050 −37.6253 9.2087 0.0100 0.0099

M3 2 0.1627 −24.7630 22.0710 0.0000 0.0000

M4 2 3.2150 −0.8929 45.9411 0.0000 0.0000

Table A.1: The even-odd task, T = 8.
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model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0036 −49.5691 0.0000 1.0000 0.9997

M2 4 0.0086 −33.3053 16.2638 0.0003 0.0003

M3 2 0.1083 −28.0155 21.5536 0.0000 0.0000

M4 2 3.7001 0.2313 49.8004 0.0000 0.0000

Table A.2: The even-odd task, T = 4.

model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0124 −39.7291 0.0000 1.0000 0.9577

M2 4 0.0085 −33.4806 6.2485 0.0440 0.0421

M3 2 0.2080 −22.7980 16.9311 0.0002 0.0002

M4 2 4.0152 0.8851 40.6142 0.0000 0.0000

Table A.3: The full-adder task, T = 8.

model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0170 −37.2356 0.0000 1.0000 0.9827

M2 4 0.0178 −27.5166 9.7190 0.0078 0.0076

M3 2 0.1087 −27.9884 9.2472 0.0098 0.0096

M4 2 4.8883 2.4592 39.6948 0.0000 0.0000

Table A.4: The full-adder task, T = 4.

model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0142 −38.6577 4.9534 0.0840 0.0775

M2 4 0.0162 −28.2748 15.3363 0.0005 0.0004

M3 2 0.0154 −43.6111 0.0000 1.0000 0.9221

M4 2 4.6586 2.0742 45.6853 0.0000 0.0000

Table A.5: The R85 task, T = 8.
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model DF SSE AICadj ∆AICadj ` w`

M1 3 0.0292 −32.8997 3.6981 0.1574 0.1359

M2 4 0.0344 −22.2688 14.3290 0.0008 0.0007

M3 2 0.0371 −36.5978 0.0000 1.0000 0.8634

M4 2 5.2193 2.9834 39.5812 0.0000 0.0000

Table A.6: The R85 task, T = 4.
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